A Numerical Correlation for The Solidification of Liquid Metal Droplets Impacting onto a Substrate
نویسندگان
چکیده
The problem of normal incidence impact with solidification of a spherical liquid metal droplet onto a rigid planar substrate is studied. The Navier-Stokes equations are solved using a finite-volume formulation with a fixed grid. The free surface of the droplet is tracked by the Volume of Fluid (VOF) method. The surface tension on the droplet surface is evaluated by a Continuum Surface Force (CSF) model. The energy equation which includes both convection-diffusion heat transfer and a mushy-region for the phase change (solidification) is modeled by using an enthalpy-based formulation. The method developed provides a comprehensive model of the dynamic and thermal aspects of the impact process. A parametric study has been performed. The effects of several parameters on the spread of the droplet on the substrate are determined. The information is used to develop, via dimensional analysis, a relationship between non-dimensional numbers and the spread factor. A correlation that predicts the spread factor as a function of some non-dimensional numbers is obtained which can serve as a design tool for liquid metal jetting applications. The correlation agrees with the experimental data available in the literature suggesting that the basic impact mechanics have been captured in the numerical model.
منابع مشابه
A Numerical Study on The Solidification of Liquid Metal Droplets Impacting onto a Substrate
The problem of normal incidence impact with solidification of a spherical liquid metal droplet onto a rigid planar substrate is studied. The Navier-Stokes equations are solved using a finite-volume formulation with a fixed grid. The free surface of the droplet is tracked by the volume-of-fluid (VOF) method. The surface tension on the droplet surface is evaluated by a continuum surface force (CS...
متن کاملNumerical Investigation of Pileup Process in Metal Microdroplet Deposition Manufacture
This paper presents a systematic numerical investigation of the transient transport phenomenon during the pileup of molten metal droplets on the substrate. The physical mechanisms of the pileup process, including the bulk liquid, capillarity effects at the liquid-solid interface, heat transfer, and solidification, are identified and quantified numerically. The droplet diameter is 100 μm, and th...
متن کاملMODELING OF RAPID SOLIDIFICATION PROCESS IN THE GAS ATOMIZATION OF MOLTEN METALS
In the present work, a model was proposed to predict the thermal history during rapid solidification (RS) of metal droplets in the gas atomization process. The classical theory of heterogeneous nucleation was based on Newtonian heat flow and enthalpy method. Solving the governing numerical equations by the finite difference method (FDM) gave up the opportunity of analyzing the temperature-time ...
متن کاملModeling Of Heat Transfer And Solidification Of Droplet/Substrate In Microcasting SDM Process
Microcasting Shape-Deposition-Manufacturing is an approach to Solid-Freeform-Fabrication (SFF) process which is a novel method for rapid automated manufacturing of near-net-shape multi-material parts with complex geometries. By this method, objects are made by sequentially depositing molten metal droplets on a substrate and shaping by a CNC tool, layer by layer. Important issues are concerned w...
متن کاملFluid Dynamics and Solidification of Molten Solder Droplets Impacting on a Substrate in Microgravity
This program investigates the fluid dynamics and simultaneous solidification of molten solder droplets impacting on a flat substrate. The problem of interest is directly relevant to the printing of microscopic solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an experimental component. The theoretical work uses axisymmetric Navier-Stokes mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997